653 research outputs found

    Generic dialogue modeling for multi-application dialogue systems

    Get PDF
    We present a novel approach to developing interfaces for multi-application dialogue systems. The targeted interfaces allow transparent switching between a large number of applications within one system. The approach, based on the Rapid Dialogue Prototyping Methodology (RDPM) and the Vector Space model techniques from Information Retrieval, is composed of three main steps: (1) producing finalized dia logue models for applications using the RDPM, (2) designing an application interaction hierarchy, and (3) navigating between the applications based on the user's application of interest

    Nonequilibrium Dynamics in Noncommutative Spacetime

    Get PDF
    We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This momentum dependent alternation of the decay and thermalization rates could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates.Comment: 24 pages, 2 figure

    Non-Commutative Gauge Theories and the Cosmological Constant

    Get PDF
    We discuss the issue of the cosmological constant in non-commutative non-supersymmetric gauge theories. In particular, in orbifold field theories non-commutativity acts as a UV cut-off. We suggest that in these theories quantum corrections give rise to a vacuum energy \rho, that is controlled by the non-commutativity parameter \theta, \rho ~ 1/theta^2 (only a soft logarithmic dependence on the Planck scale survives). We demonstrate our claim in a two-loop computation in field theory and by certain higher loop examples. Based on general expressions from string theory, we suggest that the vacuum energy is controlled by non-commutativity to all orders in perturbation theory.Comment: 11 pages, RevTex. 4 eps figures. v2: Typos corrected. To appear in Phys.Rev.

    Light-cone Superstring Field Theory, pp-wave background and integrability properties

    Full text link
    We show that the three strings vertex coefficients in light--cone open string field theory satisfy the Hirota equations for the dispersionless Toda lattice hierarchy. We show that Hirota equations allow us to calculate the correlators of an associated quantum system where the Neumann coefficients represent the two--point functions. We consider next the three strings vertex coefficients of the light--cone string field theory on a maximally supersymmetric pp--wave background. Using the previous results we are able to show that these Neumann coefficients satisfy the Hirota equations for the full Toda lattice hierarchy at least up to second order in the 'string mass' μ\mu.Comment: 23 pages, 3 figures, footnote and references adde

    Adiabatic decaying vacuum model for the universe

    Full text link
    We study a model that the entropy per particle in the universe is constant. The sources for the entropy are the particle creation and a lambda decaying term. We find exact solutions for the Einstein field equations and show the compatibilty of the model with respect to the age and the acceleration of the universe.Comment: 10 pages, 2 figure

    Phenomenology of Particle Production and Propagation in String-Motivated Canonical Noncommutative Spacetime

    Full text link
    We outline a phenomenological programme for the search of effects induced by (string-motivated) canonical noncommutative spacetime. The tests we propose are based, in analogy with a corresponding programme developed over the last few years for the study of Lie-algebra noncommutative spacetimes, on the role of the noncommutativity parameters in the E(p)E(p) dispersion relation. We focus on the role of deformed dispersion relations in particle-production collision processes, where the noncommutativity parameters would affect the threshold equation, and in the dispersion of gamma rays observed from distant astrophysical sources. We emphasize that the studies here proposed have the advantage of involving particles of relatively high energies, and may therefore be less sensitive to "contamination" (through IR/UV mixing) from the UV sector of the theory. We also explore the possibility that the relevant deformation of the dispersion relations could be responsible for the experimentally-observed violations of the GZK cutoff for cosmic rays and could have a role in the observation of hard photons from distant astrophysical sources.Comment: With respect to the experimental information available at the time of writing version 1 of this manuscript (hep-th/0109191v1) the situation has evolved significantly. Our remarks on the benefits of high-energy observations found additional encouragement from the results reported in hep-th/020925

    The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerotic plaque morphology and components are predictors of subsequent cardiovascular events. However, associations of plaque eccentricity with plaque morphology and plaque composition are unclear. This study investigated associations of plaque eccentricity with plaque components and morphology in the proximal superficial femoral artery using cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>Twenty-eight subjects with an ankle-brachial index less than 1.00 were examined with 1.5T high-spatial-resolution, multi-contrast weighted CMR. One hundred and eighty diseased locations of the proximal superficial femoral artery (about 40 mm) were analyzed. The eccentric lesion was defined as [(Maximum wall thickness- Minimum wall thickness)/Maximum wall thickness] ≥ 0.5. The arterial morphology and plaque components were measured using semi-automatic image analysis software.</p> <p>Results</p> <p>One hundred and fifteen locations were identified as eccentric lesions and sixty-five as concentric lesions. The eccentric lesions had larger wall but similar lumen areas, larger mean and maximum wall thicknesses, and more calcification and lipid rich necrotic core, compared to concentric lesions. For lesions with the same lumen area, the degree of eccentricity was associated with an increased wall area. Eccentricity (dichotomous as eccentric or concentric) was independently correlated with the prevalence of calcification (odds ratio 3.78, 95% CI 1.47-9.70) after adjustment for atherosclerotic risk factors and wall area.</p> <p>Conclusions</p> <p>Plaque eccentricity is associated with preserved lumen size and advanced plaque features such as larger plaque burden, more lipid content, and increased calcification in the superficial femoral artery.</p

    Have we already detected astrophysical symptoms of space-time noncommutativity ?

    Get PDF
    We discuss astrophysical implications of κ\kappa-Minkowski space-time, in which there appears space-time noncommutativity. We first derive a velocity formula for particles based on the motion of a wave packet. The result is that a massless particle moves at a constant speed as in the usual Minkowski space-time, which implies that an arrival time analysis by γ\gamma-rays from Markarian (Mk) 421 does not exclude space-time noncommutativity. Based on this observation, we analyze reaction processes in κ\kappa-Minkowski space-time which are related to the puzzling detections of extremely high-energy cosmic rays above the Greisen-Zatsepin-Kuzmin cutoff and of high-energy (\sim20 TeV) γ\gamma-rays from Mk 501.Comment: 10 pages, 6 figures, submitted to PRD, corrected some mistake

    Effective Potential and Spontaneous Symmetry Breaking in the Noncommutative phi^6 Model

    Full text link
    We study the conditions for spontaneous symmetry breaking of the (2+1)-dimensional noncommutative phi^6 model in the small-theta limit. In this regime, considering the model as a cutoff theory, it is reasonable to assume translational invariance as a property of the vacuum state and study the conditions for spontaneous symmetry breaking by an effective potential analysis. An investigation of up to the two loop level reveals that noncommutative effects can modify drastically the shape of the effective potential. Under reasonable conditions, the nonplanar sector of the theory can become dominant and induce symmetry breaking for values of the mass and coupling constants not reached by the commutative counterpart.Comment: 11 pages, 2 figures, corrected to match with the PRD versio
    corecore